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Abstract A theory describing the extended oscillations in secondaryelectron (SE) spectra and 
their connections with the short-range atomic stmchlre in solids is developed. We investigate 
the two main mechanisms for the occurrence of SES: direct !aocldng out of SES from the core 
level by primary electrons, and a second-order process, called autoionization, going Lhrough 
excitation of a core-level electron into some intermediate states followed by emission of the 
final SES. Interference of a direcl wave and waves reflected from neighbouring atoms ax 
considered both in the final and in the intermediate stales. We derive the cross d o n s  for 
SES created in single crystals and polycrystals. In the latter case the signal is described by the 
two Ex/us-Like oscillating functions which are controlled by the final and intermediate enerpies. 
The intermediate wave diffraction is described by the w~s- l ike  backxattering in all eaxs. 
The extended fine stmchlre is expressed, in an explicit form, in terms of mordinates and the 
scanering characteristics of neighbouring atoms, which opens up new possibilities for obtaining 
information on the short-range atomic stmchlre near surfaces. 

1. Introduction 

Recently it has been experimentally observed that CW Auger lines (transitions involved 
a corelevel hole and two valence electrons) are accompanied by intensity oscillations of 
secondary electrons (SES) escaping from solids whose kinetic energies exceed the Auger line 
energy at 5-500 eV (De Crescenzi et 01 1986, Chiarello ef al 1987). By analogy with the 
extended x-ray absorption fine structure ( m s )  some workers call this phenomenon the 
extended Auger fine structure (FS) (De Crescenzi et af 1989). At the same time, however, 
there is an alternative approach (Woodruff 1987) according to which the Auger process 
is not important for the phenomenon at all, but oscillations arise from a simple electron 
diffraction of SES emitted from a point source, just as in the well known photoelectron 
diBaction in solids (Sinkovic ef al 1991). Incidentally it should be mentioned that attempts 
to handle the signals using all the known m s - l i k e  formulae have failed (Agostino ef a1 
1992). 

There has been one quantitative description of the first-order mechanism by Aebi er 
al (1992) based on applying the Fermi golden rule and summing over transitions to all 
possible scattering states of a given energy. They obtained a strong correspondence between 
some theoretical and experimental features in Cu in the SE energy interval 150-250 eV, 
but the theoretical features possess energy-dependent shifts at higher energies than do the 
corresponding experimental features. Furthermore, their calculations do not reproduce the 
last three experimental peaks at all. 

There is another outstanding question that remains to be answered. Why does the FS 
have clearly defined Auger lines above (from the higher-kinetic-energy side) and is heavily 
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attenuated from the low-energy side? This suggests that the FS includes the formation 
through the second-order process of virtual excitations of corelevel electrons, because the 
process has an energy threshold at the CW Auger line, while the first-order process acts at 
any energies. Moreover, according to the first-order approach the FS is obtained in all types 
of material where electron scattering on neighbouring atoms has distinct values. However, 
the Fs was experimentally discovered in transition metals (Cu, Ni, CO and Ag) and is absent, 
for example, in Si (De Crescenzi et al 1989). This also suggests the use, in combination 
with the first-order mechanism, of the autoionization mechanism the contribution of which 
is proportional to the squared number of core-level electrons and the number of valence 
electrons (per atom). By this means, the difference between the first and second mechanisms 
is not only quantitative but also qualiiaiive. That is the reason why we would l i e  to study 
both types of process in a unified approach. Also, we want to gain a common picture of 
the phenomenon, i.e. simple equations which give the dependences of the SE FS spectra 
versus SE energies, the corelevel energies of electrons involved in transitions and their 
numbers. Because of this, the basis for our consideration is the simplest model that, we 
hope, is capable of describing the main features of the FS formation. We consider the model 
approach as a necessary first step that has to come before the more realistic numerical 
calculations taking into account the fine peculiarities of concrete materials. 

Therefore, there are problems in elucidating the main mechlnisms forming the FS in SE 
spectra, in developing a theory on the qualitative and quantitative FS description and. finally, 
in devising a method for retrieval of information on the short-range atomic s’mchlres near 
surfaces. Our goal is to give a solution, in the first approximation, on the basis of the 
simplest model. 

First, we investigate various intrinsic processes of SE creation on a separate atom 
as a result of inelastic primary-electron scattering. They are the first-order process of 
directly knocking SFS out of an atom, and the second-order process which will be called 
autoionization. The main results needed for one atom are given in the next section. Then 
we consider interference effects for a direct SE wave and waves reflected from neighbouring 
atoms. In section 3 the FS is investigated as a result of SE diffraction in final states. We 
obtain a new equation for the angle-integrated SE spectra; it is of EXAFS-like type. In 
section 4 an autoionization creation of SFS is considered, Special attention is focused on 
interference effects in intermediate states. This gives an ExMs-like contribution in all cases. 
In section 5 the cross sections for various mechanisms are given. In section 6 we discuss 
the main results concerned with the origin and mathematical description of the extended FS 
in SE spectra. Estimates of some integrals are given in the appendix. 

Corelevel ionization and the corresponding autoionization processes are thought to be 
the major contributors to FS at kinetic energies of 100-500 eV and even at about 1000 eV. 
However, it is well known that most SES in solids arise from the process of electron energy 
losses due to plasmon excitation and single-particle valence excitations which is repeated 
many times. The energy loss value is about A E  = 5-30 eV in every separate scattering 
event. A cascade of such losses gives a more or less homogeneous SE background which 
can far exceed the intensity of C W  Auger lines, for example. Here we are interested not 
in the background magnitude but in its FS. We should distinguish between 
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(1) oscillations in the angular distribution of the SES at any specific energy and 
(2) oscillations in their energy distribution in angle-integrated spectra. 

In section 5 we show that (2) is not evidence from (1) at all. The different magnitudes 
of the diffraction effects in distributions (1) and (2) arises from the strong angle anisotropy 
of inelastic scattering at small energy transfers A E .  Small-angle scattering is dominated in 
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any separate event in the cascade. It is large enough for diffraction to appear in the angle 
distribution and this is obtained experimentally. For diffraction in angle-integrated spectra. 
backscattering on angles from x / 2  to IT is needed. Its probability is very small for the 
cascade background mechanism; therefore it does not give a marked contribution in the FS 
of angle-integrated spectra. By contrast, the mechanisms of SE creation due to corelevel 
electron ionization, considered in this paper, provide scattering on large angles and, because 
of this, determine the FS in SE spectra. 

There is sound experimental evidence to show that the autoionization channel is 
important. Analysing the SE spectrum of silver metal (De Crescenzi et a1 1989) we can 
see that the FS. obtained from the higher-energy side of the N2,3VV Auger line (50 eV), is 
damped out gradually when the kinetic energy rises. This is natural for any mechanism, but 
after the M4,5W line (350 eV) a new FS appears. The two FSS are exhibited also in nickel 
above the M2,3VV (60 eV) and L2.3 W (920 eV) Auger lines (Guy et al 1994). It is quite 
reasonable that a new autoionization channel opens when the energy reaches the core-level 
excitation threshold, but we do not see any way in which primary electrons, losing their 
energy by small portions A E  = 5-30 eV, can produce two or more signals in different 
energy regions. Because of this we concentrate on the study of core electron ionization and 
excitation and consider the background less. 

2. The singbatom process 

Consider the inelastic scattering of a primary electron with wavevector w on a single atom. 
The electron transfers into a state of wavevector U, creating a SE of wavevector p due to 
the transition of an electron from a core level 01. The schematic diagram of the states is 
shown in figure I(a); it is thought that p < U, w .  The corresponding scattering diagram is 
displayed on figure I@). For a while, we exclude the broken line which denotes scattering 
on neighbouring atoms; this will be needed in other sections. 

la1 Ibl l d l  
w-  

a -  

Figure l. Schematic diagram of energy levels and diagrams For scauenng amplitudes, 

We have shown (Grebennikov and Sokolov 1994) that, besides the direct knocking out 
of ses (due to the first-order Coulomb interaction denoted by a wavy tine), the second-order 
autoionization process plays an important role. Associated direct and exchange diagrams 
are shown in figure l ( c )  and (d). (Once again one can ignore the broken lines.) An 
electron from a core level 01 is excited into intermediate states of wavevector 9'; then the 
hole 01 appearing is annihilated by a valence band electron f l  with simultaneous q' electron 
transition into a final state of wavevector p to be measured (q' + p and 0 -+ a). The 
exchange process is given by the transitions q' + 01 and ,B + p.  
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The energy and angle distributions of p electrons have been obtained by Grebennikov 
and Sokolov (1994). Besides the processes mentioned above, the SES escape from valence 
states and their interference with the autoionization channel have also been taken into 
account. It tums out that their contributions are small in the energy intenral to be considered. 
Recall that our region is situated above the orpp Auger line, i.e. the kinetic energy E, = p 2 / 2  
exceeds the bond energy E. = or2/2. For definition purposes, the M2.3 level in copper has 
an energy E, = 60 eV. Another possibility is the L2.3 level with energy E. = 920 eV. 
Everywhere it is thought that w, U >> p Y or and p << p ,  or. 

We believe that the principal results must be obtained in simple models. Therefore 
we take plane waves (normalized on the &function) for the continuum states zu, U, p 
and q, and lor) = (or3/r)’/2exp(-orr) for the core-level state. The analogous type 
I@) = Ni”2exp(-pr) is taken for the valence band wavefunction (the wavevector is 
omitted because of its smallness compared with p ) .  Under these assumptions we have 
obtained the following results (atomic units are used). 

Thefirst-order cross section for SES with a wavevector p takes the form 

64n5a,Zpu -- d2ua@) - 2n,uo(lTo@)1z); uo = dE dQ W 

where the amplitude is 

Here a0 is the Bohr radius and 2n, i s  the number of electrons on the level or (nu is the 
number of orbitals and the factor 2 arises from the spin states). The symbol^denotes the 
direction of the corresponding vector and the angular brackets denote averaging over the 
directions (in the given case, over the directions of the scattered electron of wavevector U). 
At p N or the angle anisotropy is not large. After integrating (1) over all angles dn ,  we 
obtain the spectral distribution 

where k is a slowly varying function of order 1. 
The integral intensity of the spectrum (3) gives the ionization cross section for the level 

or: 

ua N ?.n,na;J(E, JRyd)’. (4) 

The second-order amplitude (figures l(c) plus l(d)) is equal to 

where 

Here 2E9 = q2 = p2  -or2 = w2 - u2 -or2 The auxiliary energy ET corresponds to the rigid 
conservation law in the intermediate states (we set the valence electron energy Eg N 0). 
Recall that the intermediate-state energies Eq. need not be equal to E9. 
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Making an approximate estimate of the integral in (3, we write the autoionization cross 
section as follows: 

where 

For the M2.3 level in copper, Ea = 60 eV and na = 3, the average energy and the 
number of valence states are Ep = 5 eV and na = 5, which gives C N 1; therefore the 
autoionization contribution exceeds that from the first-order process, (figure 2). Recall that 
the curves in actuality present small additions to the background arising from the inelastic 
losses of primary electrons. For the L . 3  level, E. = 920 eV; it follows that C N 0, and the 
weight of autoionization is negligible. So, the value of the coefficient C (8) characterizes 
the relative contribution of autoionization to the SE spectra. 

Ep/E ,  

Figure Z Atomic crass sections in the model for the Mz.3 level in copper (arbitrary units): 
curve 1, the fint-order process; curve 2, the second-order process; - - -, the valence e l e m n  
contribution. 

The ratio of the full cross section of the second-order process to the OL level ionization 
cross section is 
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Recall that U# is equal to a sum of the Auger and autoionization cross sections (we neglect 
the small contribution of the x-ray decay of the core hole). In particular, it follows that 
the integral intensities of autoionization and the Auger line in the case of the Mx3 level in 
copper are almost equal to each other. 

Of course, we used a very crude model for real metals, but, it seems to us, that the main 
conclusion about the importance of the second-order process still holds for more realistic 
approaches, as well. Similar estimations based on 3p wavefunctions reduce the relative 
weight of the autoionization channel. Nevertheless, the ratio of the second-order to the 
first-order contributions is controlled by the factor C (8). as before. 

It should be remembered that the C-value is proportional to the number of core-level 
orbitals and to the number of valence electrons per atom. This makes the autoionization 
contribution higher in transition metals with filled or almost filled d bands. 

To avoid confusion, note that the single-atom cross sections 01 and 02 are among the 
factors that affect the FS. Also the FS is determined by the corresponding structure factors 
(see section 5). 
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3. Secondary electron diffraction 

In this section the diffraction effects after SE creation on angle-resolved and angle-integrated 
spectra are discussed. 

3.1. Single scattering on neighbouring atoms 

Now we take into account SE elastic scattering on a neighbouring atom. This is shown 
by broken lines in figure 1. Consider the first-order amplitude b. Take the position of the 
atom, where the SE is created, as the origin of the coordinates. The process of SE creation 
on the central atom itself is described by the amplitude T o ( r ) ;  its Fourier transform T o @ )  
is given in equation (2) for our simple model. The propagation of waves from a point r1 to 
a point rz is described by the Green function (GF) G(r2. rl); then elastic scattering on the 
potential Wj(r  - Rj) of the atom with number j centred at Rj occurs, and the SE reaches 
its final state lp) = $o(rz) .  As a result, the amplitude of the complete process is written as 
the coordinate integral 

Tj@) = @;(rz)Wj(rz - Rj)G(rz - rr)rO(rr). (10) J 
The free GF has the standard form 

where 

p + = p + i y  p+'/2 = E+, + iq. 

The coordinate r, = p~ in (10) is restricted in the range of the core wavefunctions (Y 

and the second coordinate rz = Rj + p is localized near the neighbouring atom Rj due to 
the short-range character of the potential W j .  This gives an opportunity to use the standard 
expansion IRj + p2 - pi I N Rj + ej . @Z - p l ) ,  where ej = Rj/Rj is a unit vector along 
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a neighbouring atom direction, and we arrive at the well known plane-wave approximation 
(PWA) for the CF: 

G W j  + P Z ,  pi) = (-zz~j)-'exp(ip+Rj)exp[ip, . (p2 - pt)] (12) 

where, by definition, pj = pej is the wavevector along direction e,. The imaginary addition 
iq characterizes the finite width of excited states in many-body systems. It generates an 
imaginary addition iy in the wavevector p +  = p + iy, which describes the electron wave 
damping in space in (1 1). Assuming that the final state q 4 p ( ~ )  is the normalized plane wave, 
we obtain 

q@) = A(P, 0,)R;' exp(ip+Lj)TO@j) (13) 

Wj@,Pj)=Sd3pU;(p)exp[i(p, -P).PI -+ -2nh(~ ,Qj )  (14) 

where the Fourier transform of the scattering potential given by 

is changed to the amplitude h ( p ,  8,) of plane-wave elastic scattering on an angle Qj between 
the incident pj and scattered p waves. This correction is accounted for by multiple scattering 
on the potential W,. The length L, = Rj(1 - cosSj) is the path difference for the wave 
scattered on site j and the direct wave. Of course, multiple scattering of the SES on the 
central atom also changes the source function To@) (2)  approximately, together with (14), 
but this is a quantitative correction only. 

So all details of the origin of SES and their scattering on the centre atom are contained 
in the function To@). and elastic scattering on the neighbouring atom is described by the 
value h(p. e). The latter takes into account the spherical character of the scattered waves 
(Sinkovic et al 1991) if we introduce the dependence on the distance Rj. The phase factor, 
in the middle of equation (13), is responsible for the structure in the diffraction picture. 

The equation of type (13) is well known, and it is widely used for the description of 
photoelectron diffraction in solids (Sinkovic et al 1991). Below we shall derive a new 
simple angle-integrated equation for electron diffraction. 

3.2. Scattering on atom pairs 

Of all kinds of atom pair, scattering on a site j accompanied by scattering on the centre 0 
stands out, because in this case the path differences for all waves reflected from atoms, 
possessed by the same coordination sphere, are equal. The corresponding matrix elements 
have the structure Toj@) = q4,,W&0jWjGjoTo. Using the PWA (12) for intersite GFs and 
replacing the Fourier transforms of potentials on their scattering amplitudes (14). we come 
to the equation 

To,@) = ipxj(p)fo(p. j~ - ej)To@j). (15) 

Here we introduce the function 

Xj(P) = (ipR;)-] exp(zip+Rj)h(p, 11) (16) 

describing backscattering on an atom j .  It looks very much like the well known EXAFS 
function (Sayers et a1 1970). 
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3.3. The average amplitude 

Owing to the weakness of elastic scattering Tj compared with To, the SE spectra in 
polycrystals are determined by the amplitude (c@))ej (131, averaged over all possible 
orientations e, of neighbouring atoms. To estimate this, we direct the z axis of the spherical 
coordinate system along the vector p ;  then the angle-averaged function (13) becomes 
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2n 

dB sinBexp(-ipRcosB)l d@F(B,@) 

1 
2ipR 

= -[exp(ipR)F(n) - exp(-ipR)F(O)] - 

Here the angle-dependent phase factor exp(-ipRcosB) is evolved explicitly fiom the 
function I; and the rest function is denoted as F. Then the integral over B is taken by parts, 
and the new integral term appearing is only symbolized. As a result of exponent integration, 
the factor (pR)-' < 1 arises. If the symbolized integral in (17) is small compared with 
the first term, we obtain the estimation 

( q w e ,  = [Xj(p)TO(-p) - Cj(P)TO(P)l/2 (18) 

where C j ( p )  = (ipRj)-'f;(p. 0). As is shown in the appendix, the estimation (18) holds 
true for the fully consistent consideration but, in this case, the contribution Cj from forward 
scattering should be scaled down. For the screened Coulomb potential with radius ro, 

(19) 

Hence, averaging over orientations of neighbouring atoms in polycrystals, amorphous 
matter, etc, provides the oscillating EXAFS-like function x ( p )  and some additional 
background C ( p )  for ordinary electron diffraction. In our view, this is a new and useful 
result for traditional SE diffraction theory. 

C j ( p )  = 2R;'&(p, n)[0.577 - In(Zpr$R) - in/2]. 

4. Diffraction in autoionization 

Elastic scattering on neighbouring atoms modifies the intra-atomic autoionization process 
described in section 2 in two ways: firstly because of electron scattering after SE creation; 
secondly because of scattering in intermediate states during autoionization itself. 

4.1. Scattering after autoionization 

This is described by figures I(c) and I(d) except that the broken line is not in the middle of 
the diagram as shown in the figures, but at line p, as in figure I(b). For this case the final 
results are similar to those of section 3, where the matrix element To@,), describing the SE 
creation in the state of wavevector p j  should be replaced by the corresponding second-order 
autoionization element Do@j) (5).  So, the amplitude Dj of autoionization accompanied by 
following elastic scattering on a neighbouring atom is given by an equation of type (13): 

(20) 

However, producing equation (20) is more complicated than equation (13) by virtue of the 
fact that T'(T) is localized at the atom at the origin but the corresponding function Do(?-) 
is only centred on that atom and can spread far from it owing to the rather small attenuation 

D,@) = f j ( p .  @j)R;' exp(ip+Lj)D'@j). 



Fine structures in secondary-electron spectra 5121 

of the Coulomb interaction. As a result, the validity of the PWA for the GF connected with 
a source of scatter j in an equation such as (IO) is not evident. 

To obtain (20) we start from the exact expression 

and integrate it over angle variables by parts in the sense of (17). Then we anive at integrals 
of the type J+ ( A 3  from the appendix and their estimations furnish the result (20). 

The average amplitude of polycrystals (amorphous matter or angle-integrated experi- 
ments) is identical with (17): 

(Dj@))ej [xJ(p)D0(-~)  - C ~ ( P ) D ~ ( P ) I / ~ .  (21) 

4.2. Scattering in intermediate states 

This is described by figures l(c) and I (d) ,  where elastic scattering on neighbouring atoms 
takes place between primary excitation and emission of final electrons or, which is the 
same. the intermediate-state perturbation due to other atom potentials is taken into account. 
A corresponding amplitude is formed of type Sj = MGfiGjoTo. If we make allowance for 
(lo), (11) and (13), this becomes 

where 

?(d; 4) = fj(P', 4i)R;I eXP[i(q+ - 41COS~j)R~lTo(~j)  (23) 

f;.(q', qj) is the amplitude of plane-wave scattering from q = qej state into the q' state on 
the potential Wj.  At q' = q j ,  equation (U) turns into equation (13). 

It is very simple to take the integral in (22) for the bubble (exchange) diagram in 
figure I (d )  because the electron of wavevector d transfers into a short-range inner state a, 
which gives us the opportunity to use the PWA for the GF in (22). 

In the direct diagram. figure I(c), the electron goes from one delocalized q' state into 
another delocalized p state, and connection with the central atom is controlled only by the 
long-range Coulomb interaction. Nevertheless, a contribution from elastic backscattering 
prevails in this case, too. To show this, we rewrite the denominator in the integral (22) in 
the form of two fractions 2q'/(qz -4") = l / ( q  -4') - I/(q+q'). After changing variables 
q' + -4' in the second item and reversing the direction 4' + -4' to conserve the rest 
under the integral functions, we obtain 

Using an estimation of type (17), this leads to the equation 
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Evaluating integrals by equation (A5) from the appendix we find the final result 
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s~(P) = -4n ’ iqx j (q )~@.  -q,)TO(qj). (25) 

Note that there is a correspondence between scattering Sj (25) and backscattering TO, 
(15) under the condition -4nzM@. -9) --f fo(p. n - e). However, the oscillations in 
(25) are controlled not by the final but by the intermediate energy q2 = p z  - 0 1 ~ .  

In conclusion, the intermediate-state perturbation due to the neighbouring atoms leads 
to the EXAFS-like oscillations x(q)  in the autoionization channel even in single crystals. 
This is the specific peculiarity of the second-order process. 

The amplitude in polycrystals is obtained by averaging (25) over all qj directions. This 
can be represented by 

The last equation is written on the assumption that functions M and To may be chosen to 
be real, for example as in (2) and (6). 

5. The SE spectra 

By spectrum we mean the current created by the SE with a definite energy and p direction. 
Another characteristic of the process is given by its cross section 

-- d2u(P) - uo(lT@; m ) I Z ) i .  
d E d Q  

Here T denotes the full matrix of the transition of the primary electron of wavevector w 
into the U stale on ejecting the SES in the p state with energy E = p2/2 in the space angles 
dQ. It can be shown that there is a simple connection 

e x p ( - 2 y r ) d d ~ ) / d E  = d 4 J l &  (28) 

between the cross section in the p direction and the current dl, = j,,r2dQ normalized with 
respect to the density j, of the primary beam current. It is the damping on the left-hand 
side of (28) that requires us to introduce the damping exp(-yr) in the wavefunction and 
the corresponding imaginary addition p+ = p + iy in equation (13), etc, together with the 
total path difference L j  of interference waves. 

The first-order cross section is determined by the amplitude TI = To + I;: + Toj, which 
is the sum of the atomic (single-centre) amplitude To ( Z ) ,  the small corrections ?; (13) for 
scattering on neighbouring atoms and the subsequent additional scattering Toj (15) on the 
centre. The subscript 1 indicates that the final state is formed by single inelastic scattering. 
As a result, a hole is present in the core level 01 in final states. 

Another group of final states arise in autoionization, namely the double inelastic 
process. In this case the core level is occupied and the hole elevated to the valence band. 
Summing (5). (20) and (25), and also the pair scattering analogue of (15), Doj. we obtain 
Tz = Do + Dj + DO, + Sj. 

The main contributions in fi  and Tz arise from the first terms To and Do. The relation 
between these have been described in section 2 (see also Grebennikov and Sokolov (1994)). 
The rest leads to the FS. 
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5.1. The first-order cross section 

Substituting 6 into (27), we find in the linear approximation that 

f fo(pS x - e j ) ipx j (~ ) l  . (29) 11 
In the polycrystalline case the cross section is determined by equation (29) averaged 

over different atom directions: 

where 
= x j ( p ) [ l  +2i~(fo(p,Sj)),,l  (31) 

is the function (16) renormalized owing to O j  pair elastic scattering, and /I = 
(T~@)T0(-p)}p/(lTo@)p)12)g is a coefficient equal to about 1 at p N a << w ,  i.e. in 
the case when anisotropy of the single-atom cross section is small. 

The signal (30) is described by the product of the singleatom cross section on the 
oscillating function ~ ( p ) .  Also scattering on atoms generates the additional background 

The first term in (29) and (30) describes the single-atom cross section. Neighbouring- 
atom effects are given by two factors: atomic and structural. The atomic factor (correlator) 
( T @ ) T @ j ) )  = I ( p ,  0,) is defined as the averaged product of creation amplitudes for 
two waves. The first propagates in the selected p direction and the other goes to a 
neighbouring atom j .  In fact, I ( p ,  Sj) determines the intensity of the source of the waves. 
The structural factor describes interference between the waves after scattering one of them 
on a neighbouring atom j .  

The angle-averaged equation (30) is controlled by two extreme angles S = x and 0. 
The amplitude of oscillations in angle-integrated spectra is proportional to the correlator 
I ( p ,  n). Its estimations give us an opportunity to select the most important mechanisms 
for FS formation. 

In this connection consider the cascade mechanism that forms the SE background. The 
initial electron loses its energy many times in small portions most of which are due to 
plasmon excitations and single-particle valence excitations. The losses AE = 5-30 eV 
are small compared with the energies E = 100-500 eV considered. Under this condition 
most electrons scatter at small angles. It is easily seen, for example, from equation (2) 
which has to be used now for electrons of type U (in the notation of figure 1) .  It is also 
necessary to change p to U in (29) and (30). The value a' may be considered as the valence 
electron energy, and pz +az = AE/Ryd < U?, u2. For large angles between u and w the 
amplitude T(u) cx (w - u ) - ~  2: (2usinS/2)-6. Therefore the back-scattering correlator 
I ( u ,  n) almost disappears. For the space distribution (29), small-angle scattering is quite 
sufficient and we see that its amplitude T(u) a (u6'-2 is rather large. We believe that the 
cascade background mechanism yields diffraction effects on the angle distribution but, at 
the same time, it does not give an essential contribution to FS in the angle-integrated spectra 
owing to the strong anisotropy of the elementary scattering event. 

Electrons knocked from core levels have an almost isotropic distribution at p N a. 
Therefore they can give a larger contribution to the FS in the SE spectra. Even in the p >> a 
case, p electrons are emitted at about 90" to the primary electron direction w which also 
leads to a rather large magnitude of I ( p ,  n). 

C(P). 
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5.2. The second-order cross section 

Consider now the second-order cross section duz, which, as has been discussed, can exceed 
dut in practically important cases. 
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Substitution of TZ in (27) results in the autoionization cross section 

%!? = 2 n p o [ ( l D o @ ) ~ z ) i  + 2Re ( ~ [ ( O ' o @ ) D o @ j ) ) i [ f , ( p , B j ) R ~ l  exp(ip+Lj) 
dEdS2 i 

+ f o b .  IC - @j)ipxj(p)l - (D"O@)M@, -si)4n2iqT0(qj))61Z(q)))]. 

(32) 

Here the last term is new compared with dui. It arises from scattering in intermediate states, 
namely Sj (25) and SO,. The pair scattering Soj of intermediate electrons of the type (15) 
renormalizes the function x(q) as in (31). 

In polycrystals (angle-integrated cross section), 

(33) 
The coefficients, determined by the weights of the final p-  and intermediate q-state 
contributions, are given by the equations 

COSIrlr(P)l = ImIDO@)/lDO(P)ll 

Lcz = ( ( ~ ~ @ ) D " - P ) ) ) ; / ( l ~ 0 @ ) l Z ) i .  

Note that the EXAFS-like function (31) is included in cross sections in the form 

Re[jj(p)l = (pR;)-'Ifi(p, R ) I  sin(2pRj + @j + Ah)exp(-ZyRj) (34) 
where q5j is the back-scattering phase shift on an atom j ,  and A& is the phase shift on the 
central atom determined from the equation 

exp(iA@o) 1 + 2ip(fo(p7 4L,. (35) 
Considering (32) again, note that the autoionization oscillating signal consists of two 

contributions. The first arises from the direct- and scattered-wave interference, as in the 
first-order process (29), but moreover there are EXaFs-like oscillations x(q) arising from 
the intermediate electron q backscattering. 

In the polycrystalline case (33), angle averaging leads to two EXAFS-like signals (34) 
from both final and intermediate states (Grebennikov and Sokolov 1992, Guy er al 1993). 

6. Discussion 

We have considered two main mechanisms responsible for the FS in SE spectra: 

(1) direct knocking of SES from core levels accompanied by interference between a 
direct wave and a wave scattered on neighbouring atoms, which have been proposed by 
Woodruff (1987); 

(2) the autoionization second-order process put forward by De Crescenzi et a1 (1986, 
1989). 
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We have indicated the probable reason why the SE background contains diffraction 
effects in the angle distribution at any specific energy and why these effects are highly 
suppressed in the energy distribution in angle-integrated spectra. The reason is that the 
small-angle scattering dominates the elementw event of the background cascade owing to 
small energy losses at plasmon and single-particle valence excitations. 

The first-order cross section is written as in equation (29), which is similar to relevant 
common equations in the theory of photoelectron (Sinkovic et al 1991) or Auger electron 
(Agostino et al 1994) diffraction. We have shown that the interference of an electron 
wave from a point source and a wave scattered on neighbouring atoms leads to ExAFs-like 
oscillations x(p)  after averaging over all directions (equation (30)). The oscillations are 
described by single elastic backscattering. What is more, a monotonic addition to the atomic 
cross section exists. The result is correct at p R  >> 1 for polycrystals, amorphous matter, 
etc. and also for the angle-integrated SE spectra. 

The oscillations arise because the momentum transfer ends at its maximal value 2p 
abruptly. Note that, in experiments on single crystals, integrations are carried out over 
finite reception angles. This blurs the transfer boundary and can produce some attenuation 
of signals. 

The autoionization process goes through the intermediate excited q states. The FS 
in single crystals is formed hy two mechanisms (32). They are firstly final electron p 
scattering on definite diffraction angles, just as in the first-order case (29) and secondly 
intermediate electron backscattering with a wavenumber q = ( p z  - L Y ~ ) I / ~  (the last term in 
(32)). After angle averaging @olycrystals, etc) the contribution of the p electron becomes 
EXAFS like too, as was described above for first-order ionization. As a result, the extended 
FS (33) is controlled by two oscillating functions x(q) and x(p)  (34). The structure factor 
x (34) has a strong p dependence. Apart from the multiplier p-', it contains the back- 
scattering amplitude f cx p-'. Also, the phases 2pRj are very sensitive to the interatomic 
distance variations at large p .  For example, averaging over chaotic thermal (and zero- 
point) atomic motions gives rise to the Debye-Waller factor exp(-2(ARy)p2). Since the 
intermediate-state energy q2 = p2 - a2 is smaller than the final-state energy p2, usually 
x(q)/x(p) > 1. The ratio becomes particularly high for deeper levels. We expect that the 
FS above the L2,3W Auger line in copper ( E  = 920 eV) is controlled by the autoionization 
mechanism despite the fact that the second-order single-atom cross section is very small: 
C = Q / U ~  << 1; see (8). The experimental FS (Guy el al 1994) is obtained in a small 
energy interval of about 100 eV. This is easy to understand if one takes into account the 
strong q-dependent structural function x ( q ) .  In the M2,sW case, the values of p and q 
look very similar in the energy region 100-400 eV and, to describe the extended FS, we 
need to take into account diffraction both in the final and in the intermediate states. 

The relation of the extended FS with the coordinates and scattering characteristics of 
neighbouring atoms opens up new possibilities for determining the short-range atomic 
structure near the solid surfaces using oscillations in the SE spectra. 
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Appendix 

Let us calculate the function q(p) (13) averaged over every possible direction ej. For 
simplicity, we consider scattering on the screened Coulomb potential with a radius ro and an 
effective charge 2: W ( p )  = -Z/pexp(-p/ro). In the Born approximation for a scattering 
amplitude (14), after neglecting the angle dependence on To@) (which is reasonable for 
p 2  E c? < w2), we obtain the equation 

(AI) 
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( T ( p ) ) ,  = {exp[ip+R(l - cos6')12Z/(lp - pelZ + r;2))eTo/R. 

We omit the atom number index j hereafter. Since ( p -  pel2 = 2p2y, where y = 1 - cos8, 
averaging in (AI) results in the integral 

dy Z exp(ipRyd) I = L  2pzy+r;2 

which can be transformed into two standard exponential integral functions with an imaginary 
argument (with allowance for damping p -+ p +  = p + iy with a complex value). First, 
we determine typical parameter values. 

Let the SE energies be E/Ryd = p2  = 9-36; then the wavevector values p = 3 6  au. 
The nearest-neighbour atom distance in copper is R zz 5 Bohr radii. Put ro = R/Z, i.e. the 
potential is screened within the muffin-tin sphere. As a result, we obtain that p R  > 15 and, 
therefore (pR)-' is a small perturbation parameter. 

Now we rewrite (A2) as a sum of two integrals: I = i: + 1;. We integrate the first 
by parts N times: 

The last N + 1 item was obtained by evaluating the integral by replacement of the pre- 
exponential function to its maximum value. 

After substitution of variables in the second integral, from 0 to 00, we obtain the standard 
function 

644) 
ic ix+ (u+)~  
2 l x l !  2 X 2 !  

-Z 
= - exp(-ix+) c + Inx+ - i- + - + - + .. . 

2P2 

where x = R/Zpri, t i  = tp+/p,  x +  = xp+/p and C = 0.511. .  . is the Euler constant. 
Keeping only the leading term ( x  << I), in (A3) and (A4) we obtain (16). (18) and (19). 
Now estimate the integrals 

Using the Cauchy-type integral, we introduce the piecewise analytical function from a 
complex variable z: 
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where F*(q) = F(z  = q i io) are the limiting values of the function (A6) on the real 
number axis from the upper and lower sides of a complex plane, respectively. 

Substitute (A6) for J+ (A5). The interval from the function F+ is calculated by closing 
the integration path over an infinite radius arc in the upper complex plane, which produces 
the result 

The auxiliary function is added to and subtracted from the integrand to form a function 
of the type (sinx)/x (in parentheses) which is localized in an interval q - q' < a / R  (at 
y 4 n/R). This enables us to take F-(q')  out of the integration at a point q' = q. The 
remaining integral is readily calculated, as well as the integral with the last item, and we 
obtain the estimations 

J+ = [F(q+)  + F(q- )  - 2F-(q)l exp(-yR) 

= [2nif(q) + F(q+) - F+(q) + F ( q - )  - F-(q)Iexp(-yR) 

01 

J+ ~&if(q)exp(-yR) .  (A71 

Similar transfonnations and approximations show that 

In this case, both integrals are equal to zero; therefore 

J- N 0. 
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